EconPapers    
Economics at your fingertips  
 

What do we Learn from a Machine Understanding: News Content? Stock Market Reaction to News

Marie Brière, Karen Huynh, Olav Laudy and Sébastien Pouget

No 23-1401, TSE Working Papers from Toulouse School of Economics (TSE)

Abstract: Using textual data extracted by Causality Link platform from a large variety of news sources (news stories, call transcripts, broker re-search, etc.), we build aggregate news signals that take into account the tone, the tense and the prominence of various news statements about a given firm. We test the informational content of these signals and examine how news is incorporated into stock prices. Our sample covers 1,701,789 news-based signals that were built on 4,460 US stocks over the period January 2014 to December 2021. We document large and significant market reactions around the publication of news, with some evidence of return predictability at short horizons. News about the future drives much larger reactions than news about the present or the past. Stock returns also react more to high-coverage news, fresh news and purely financial news. Finally, firms’ size matters: stocks that are not components of the Russell 1000 index experience larger reactions to news compared to those that are Russell 1000 components. Implications of our results for financial analysts and investors are of-fered and related to the links between news, firms’ market value and investment strategies.

Keywords: Natural Language Processing; Textual Analysis; Efficient Market Hypothesis; ESG (search for similar items in EconPapers)
Date: 2023-01-19
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2023/wp_tse_1401.pdf Full Text (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:127755

Access Statistics for this paper

More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-04-01
Handle: RePEc:tse:wpaper:127755