Willingness to Say? Optimal Survey Design for Prediction
Charlotte Cavaillé,
Karine Van Der Straeten and
Daniel L. Chen
No 23-1424, TSE Working Papers from Toulouse School of Economics (TSE)
Abstract:
Survey design often approximates a prediction problem: the goal is to select instruments that best predict the value of an unobserved construct or a future outcome. We demonstrate how advances in machine learning techniques can help choose among competing instruments. First, we randomly assign respondents to one of four survey instruments to predict a behavior defined by our validation strategy. Next, we assess the optimal instrument in two stages. A machine learning model first predicts the behavior using individual covariates and survey responses. Then, using doubly robust welfare maximization and prediction error from the first stage, we learn the optimal survey method and examine how it varies across education levels.
Date: 2023-04-04
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2023/wp_tse_1424.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:128022
Access Statistics for this paper
More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().