EconPapers    
Economics at your fingertips  
 

Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles

Abdelaati Daouia, Gilles Stupfler and Antoine Usseglio-Carleve

No 23-1444, TSE Working Papers from Toulouse School of Economics (TSE)

Abstract: The expectile is a prime candidate for being a standard risk measure in actuarial and financial contexts, for its ability to recover information about probabilities and typical behavior of extreme values, as well as its excellent axiomatic properties. A series of recent papers has focused on expectile estimation at extreme levels, with a view on gathering essential information about low-probability, high-impact events that are of most interest to risk managers. The obtention of accurate confidence intervals for extreme expectiles is paramount in any decision process in which they are involved, but actual inference on these tail risk measures is still a difficult question due to their least squares nature and sensitivity to tail heaviness. This article focuses on asymptotic Gaussian inference about tail expectiles in the challenging context of heavy-tailed observations. We use an in-depth analysis of the proofs of asymptotic normality results for two classes of extreme expectile estimators to derive bias-reduced and variance-corrected Gaussian confidence intervals. These, unlike previous attempts in the literature, are well-rooted in statistical theory and can accommodate underlying distributions that display a wide range of tail behaviors. A large-scale simulation study and three real data analyses confirm the versatility of the proposed technique.

Keywords: Asymptotic normality; Bias correction; Expectiles; Extreme values; Inference; Variance correction (search for similar items in EconPapers)
Date: 2023-06-07, Revised 2023-11
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2023/wp_tse_1444.pdf Full Text (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:128141

Access Statistics for this paper

More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-04-01
Handle: RePEc:tse:wpaper:128141