The Stick-Breaking and Ordering Representation of Compositional Data: Copulas and Regression models
Olivier Faugeras
No 24-1500, TSE Working Papers from Toulouse School of Economics (TSE)
Abstract:
Compositional Data (CoDa) is usually viewed as data on the simplex and is studied via a log-ratio analysis, following the classical work of Aitchison [2]. We propose to bring to the fore an alternative view of CoDa as a stick breaking process, an approach which originates from Bayesian nonparametrics. The first stick-breaking approach gives rise to a view of CoDa as ordered statistics, from which we can derive “stick-ordered” distributions. The second approach is based on a rescaled stick-breaking transformation, and give rises to a geometric view of CoDa as a free unit cube. The latter allows to introduce copula and regression models, which are useful for studying the internal or external dependence of CoDa. These stick-breaking representations allow to effectively and simply deal with CoDa with zeroes. We establish connections with other topics of probability and statistics like i) spacings and order statistics, ii) Bayesian nonparametrics and Dirichlet distributions, iii) neutrality, iv) hazard rates and the product integral, v) mixability.
Date: 2024-01, Revised 2024-10
New Economics Papers: this item is included in nep-ecm
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2024/wp_tse_1500.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:129018
Access Statistics for this paper
More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().