VaR methodology for non-Gaussian finance
Marine Habart-Corlosquet,
Jacques Janssen and
Raimondo Manca
ULB Institutional Repository from ULB -- Universite Libre de Bruxelles
Abstract:
With the impact of the recent financial crises, more attention must be given to new models in finance rejecting "Black-Scholes-Samuelson" assumptions leading to what is called non-Gaussian finance. With the growing importance of Solvency II, Basel II and III regulatory rules for insurance companies and banks, value at risk (VaR) - one of the most popular risk indicator techniques plays a fundamental role in defining appropriate levels of equities. The aim of this book is to show how new VaR techniques can be built more appropriately for a crisis situation. VaR methodology for non-Gaussian finance looks at the importance of VaR in standard international rules for banks and insurance companies; gives the first non-Gaussian extensions of VaR and applies several basic statistical theories to extend classical results of VaR techniques such as the NP approximation, the Cornish-Fisher approximation, extreme and a Pareto distribution. Several non-Gaussian models using Copula methodology, Lévy processes along with particular attention to models with jumps such as the Merton model are presented; as are the consideration of time homogeneous and non-homogeneous Markov and semi-Markov processes and for each of these models.
Pages: 165 p.
Date: 2013-01
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ulb:ulbeco:2013/249697
Ordering information: This working paper can be ordered from
http://hdl.handle.ne ... lb.ac.be:2013/249697
Access Statistics for this paper
More papers in ULB Institutional Repository from ULB -- Universite Libre de Bruxelles Contact information at EDIRC.
Bibliographic data for series maintained by Benoit Pauwels ().