EconPapers    
Economics at your fingertips  
 

Optimal Markowitz Portfolio Using Returns Forecasted with Time Series and Machine Learning Models

Damian Ślusarczyk and Robert Ślepaczuk
Additional contact information
Damian Ślusarczyk: University of Warsaw, Faculty of Economic Sciences

No 2023-17, Working Papers from Faculty of Economic Sciences, University of Warsaw

Abstract: We aim to answer the question of whether using forecasted stock returns based on machine learning and time series models in a mean-variance portfolio framework yields better results than relying on historical returns. Nevertheless, the problem of the efficient stock selection has been tested for more than 50 years, the issue of adequate construction of mean-variance portfolio framework and incorporating forecasts of returns in it has not been solved yet. Stock returns portfolios were created using ’raw’ historical returns and forecasted return based on ARIMA-GARCH and the XGBoost models. Two optimization problems were concerned: global maximum information ratio and global mini-mum variance. Then strategies were compared with two benchmarks – an equally weighted portfolio and buy and hold on the DJIA index. Strategies were tested on Dow Jones Industrial Average stocks in the period from 2007-01-01 to 2022-12-31 and daily data was used. The main portfolio performance metrics were information ratio* and information ratio**. The results showed that using forecasted returns we can enhance our portfolio selection based on Markowitz framework, but it is not a universal solution, and we have to control all the parameters and hyperparameters of selected models.

Keywords: Algorithmic Investment Strategies; Markowitz framework; portfolio optimization; forecasting; ARIMA; GARCH; XGBoost; minimum variance (search for similar items in EconPapers)
JEL-codes: C14 C4 C45 C53 C58 G13 (search for similar items in EconPapers)
Pages: 48 pages
Date: 2023
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.wne.uw.edu.pl/download_file/3093/0 First version, 2023 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:war:wpaper:2023-17

Access Statistics for this paper

More papers in Working Papers from Faculty of Economic Sciences, University of Warsaw Contact information at EDIRC.
Bibliographic data for series maintained by Marcin Bąba ().

 
Page updated 2025-03-22
Handle: RePEc:war:wpaper:2023-17