EconPapers    
Economics at your fingertips  
 

A Comparison of Grading Models for Neighborhood Level of Family Housing Units

Zeynep Gamze Mert (), Serhat Yilmaz () and Ertan Mert ()

ERSA conference papers from European Regional Science Association

Abstract: More recently Turkey has witnessed fast housing development and real estate sector growth because of the mortgage preparations. With this development, property location quality has been considered important for selecting and paying them. This study uses a data set of new single family housing units in Kocaeli University Campus Area. By using 4 location quality criteria, 27 single family housing units are graded at the neighborhood level. It is aimed to examine the applications of grading property at the neighborhood level based on property location quality by testing with three methods. Traditional method and fuzzy logic method were discussed in our antecedent studies. In this study, an easy used numerical calculation method; Neural Networks (NN), is introduced. Its grading performance is compared with the previous methods. NN method is found to be more accurate and realistic than traditional grading approach where its designing stage is more practical and faster than fuzzy logic approach.

Date: 2011-09
New Economics Papers: this item is included in nep-ara, nep-cmp and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/e110830aFinal00966.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wiw:wiwrsa:ersa11p966

Access Statistics for this paper

More papers in ERSA conference papers from European Regional Science Association Welthandelsplatz 1, 1020 Vienna, Austria.
Bibliographic data for series maintained by Gunther Maier ().

 
Page updated 2025-03-22
Handle: RePEc:wiw:wiwrsa:ersa11p966