Analysis of call centre arrival data using singular value decomposition
Haipeng Shen and
Jianhua Z. Huang
Applied Stochastic Models in Business and Industry, 2005, vol. 21, issue 3, 251-263
Abstract:
We consider the general problem of analysing and modelling call centre arrival data. A method is described for analysing such data using singular value decomposition (SVD). We illustrate that the outcome from the SVD can be used for data visualization, detection of anomalies (outliers), and extraction of significant features from noisy data. The SVD can also be employed as a data reduction tool. Its application usually results in a parsimonious representation of the original data without losing much information. We describe how one can use the reduced data for some further, more formal statistical analysis. For example, a short‐term forecasting model for call volumes is developed, which is multiplicative with a time series component that depends on day of the week. We report empirical results from applying the proposed method to some real data collected at a call centre of a large‐scale U.S. financial organization. Some issues about forecasting call volumes are also discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1002/asmb.598
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:21:y:2005:i:3:p:251-263
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().