Mining performance data through nonlinear PCA with optimal scaling
Paola Costantini,
Marielle Linting and
Giovanni C. Porzio
Applied Stochastic Models in Business and Industry, 2010, vol. 26, issue 1, 85-101
Abstract:
Performance data are usually collected in order to build well‐defined performance indicators. Since such data may conceal additional information, which can be revealed by secondary analysis, we believe that mining of performance data may be fruitful. We also note that performance databases usually contain both qualitative and quantitative variables for which it may be inappropriate to assume some specific (multivariate) underlying distribution. Thus, a suitable technique to deal with these issues should be adopted. In this work, we consider nonlinear principal component analysis (PCA) with optimal scaling, a method developed to incorporate all types of variables, and to discover and handle nonlinear relationships. The reader is offered a case study in which a student opinion database is mined. Though generally gathered to provide evidence of teaching ability, they are exploited here to provide a more general performance evaluation tool for those in charge of managing universities. We show how nonlinear PCA with optimal scaling applied to student opinion data enables users to point out some strengths and weaknesses of educational programs and services within a university. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1002/asmb.771
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:26:y:2010:i:1:p:85-101
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().