A nonparametric approach to detecting changes in variance in locally stationary time series
J.‐L. Chapman,
I. A. Eckley and
R. Killick
Environmetrics, 2020, vol. 31, issue 1
Abstract:
This paper proposes a nonparametric approach to detecting changes in variance within a time series that we demonstrate is resilient to departures from the assumption of normality or presence of outliers. Our method is founded on a local estimate of the variance provided by the locally stationary wavelet framework. Within this setting, the structure of this local estimate of the variance will be piecewise constant if a time series has piecewise constant variance. Consequently, changes in the variance of a time series can be detected in a nonparametric setting. In addition, using a simulation study, we explore the robustness of our approach against the typical assumption of normality and presence of outliers. We illustrate the application of the approach to changes in variability of wind speeds at a location in the United Kingdom.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1002/env.2576
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:1:n:e2576
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().