EconPapers    
Economics at your fingertips  
 

On modeling positive continuous data with spatiotemporal dependence

Moreno Bevilacqua, Christian Caamaño‐Carrillo and Carlo Gaetan

Environmetrics, 2020, vol. 31, issue 7

Abstract: In this article, we concentrate on an alternative modeling strategy for positive data that exhibit spatial or spatiotemporal dependence. Specifically, we propose to consider stochastic processes obtained through a monotone transformation of scaled version of χ2 random processes. The latter is well known in the specialized literature and originates by summing independent copies of a squared Gaussian process. However, their use as stochastic models and related inference has not been much considered. Motivated by a spatiotemporal analysis of wind speed data from a network of meteorological stations in the Netherlands, we exemplify our modeling strategy by means of a nonstationary process with Weibull marginal distributions. For the proposed Weibull process we study the second‐order and geometrical properties and we provide analytic expressions for the bivariate distribution. Since the likelihood is intractable, even for a relatively small data set, we suggest adopting the pairwise likelihood as a tool for inference. Moreover, we tackle the prediction problem and we propose to use a linear prediction. The effectiveness of our modeling strategy is illustrated by analyzing the aforementioned Netherland wind speed data that we integrate with a simulation study. The proposed method is implemented in the R package GeoModels.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/env.2632

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:7:n:e2632

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2632