Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference
Evandro Konzen,
Cláudia Neves and
Philip Jonathan
Environmetrics, 2021, vol. 32, issue 4
Abstract:
This article compares the modeling of nonstationary extreme events using parametric models with local parametric and semiparametric approaches also motivated by extreme value theory. Specifically, three estimators are compared based on (a) (local) semiparametric moment estimation, (b) (local) maximum likelihood estimation, and (c) spline‐based maximum likelihood estimation. Inference is performed in a sequential manner, highlighting the synergies between the different approaches to estimating extreme quantiles, including the T‐year level and right endpoint when finite. We present a novel heuristic to estimate nonstationary extreme value threshold with exceedances varying on a circular domain, and hypothesis‐testing procedures for identifying max‐domain of attraction in the nonstationary setting. Bootstrapping is used to estimate nonstationary confidence bounds throughout. We provide step‐by‐step guides for estimation, and explore the different inference strategies in application to directional modeling of hindcast storm peak significant wave heights recorded in the North Sea.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2667
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:32:y:2021:i:4:n:e2667
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().