Bayesian estimation of heterogeneous environments from animal movement data
Svetlana V. Tishkovskaya and
Paul G. Blackwell
Environmetrics, 2021, vol. 32, issue 6
Abstract:
We describe a flexible class of stochastic models that aim to capture key features of realistic patterns of animal movements observed in radio‐tracking and global positioning system telemetry studies. In the model, movements are represented as a diffusion‐based process evolving differently in heterogeneous regions. In this article, we extend the process of inference for heterogeneous movement models to the case in which boundaries of habitat regions are unknown and need to be estimated. Data augmentation is used in reconstructing the partition of the heterogeneous environment. The augmentation helps to diminish the impact of uncertainty about when and where the animal crosses habitat boundaries, and allows the extraction of additional information from the given observations. The approach to inference is Bayesian, using Markov chain Monte Carlo methods, allowing us to estimate both the parameters of the diffusion processes and the unknown boundaries. The suggested methodology is illustrated on simulated data and applied to real movement data from a radio‐tracking experiment on ibex. Some model checking and model choice issues are also discussed.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2679
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:32:y:2021:i:6:n:e2679
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().