A nonstationary and non‐Gaussian moving average model for solar irradiance
Wenqi Zhang,
William Kleiber,
Bri‐Mathias Hodge and
Barry Mather
Environmetrics, 2022, vol. 33, issue 3
Abstract:
Historically, power has flowed from large power plants to customers. Increasing penetration of distributed energy resources such as solar power from rooftop photovoltaic has made the distribution network a two‐way‐street with power being generated at the customer level. The incorporation of renewables introduces additional uncertainty and variability into the power grid. Distribution network operation studies are being adapted to include renewables; however, such studies require high quality solar irradiance data that adequately reflect realistic meteorological variability. Data from satellite‐based products are spatially complete, but temporally coarse, whereas solar irradiances exhibit high frequency variation at very fine timescales. We propose a new stochastic method for temporally downscaling global horizontal irradiance (GHI) to 1 min resolution, but we do not consider the spatial aspect due to limited availability of the in situ irradiance measurements. Solar irradiance's first and second‐order structures vary diurnally and seasonally, and our model adapts to such nonstationarity. Empirical irradiance data exhibits highly non‐Gaussian behavior; we develop a nonstationary and non‐Gaussian moving average model that is shown to capture realistic solar variability at multiple timescales. We also propose a new estimation scheme based on Cholesky factors of empirical autocovariance matrices, bypassing difficult and inaccessible likelihood‐based approaches. The model is demonstrated for a case study of three locations that are located in diverse climates through the United States. The model is compared against competitors from the literature and is shown to provide better uncertainty and variability quantification on testing data.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2712
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:33:y:2022:i:3:n:e2712
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().