EconPapers    
Economics at your fingertips  
 

Regression methods for the appearances of extremes in climate data

Chang Yu, Ondrej Blaha, Michael Kane, Wei Wei, Denise Esserman and Daniel Zelterman

Environmetrics, 2022, vol. 33, issue 7

Abstract: For any given city, on any calendar day, there will be record high and low temperatures. Which record occurred earlier? If there is a trend towards warming then, intuitively, there should be a preponderance of record highs occurring more recently than the record lows for each of the 365 calendar days. We are interested in modeling the joint distribution of appearances of the extremes but not these values themselves. We develop a bivariate discrete distribution modeling the joint indices of maximum and minimum in a sequence of independent random variables sampled from different distributions. We assume these distributions share a proportional hazard rate and develop regression methods for these paired values. This approach has reasonable power to detect a small mean change over a decade. Using readily available public data, we examine the daily calendar extreme values of five US cities for the decade 2011–2020. We develop linear regression models for these data, describe models to account for calendar‐date dependence, and use diagnostic measures to detect remarkable observations.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/env.2764

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:33:y:2022:i:7:n:e2764

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:33:y:2022:i:7:n:e2764