Nonlinear prediction of functional time series
Haixu Wang and
Jiguo Cao
Environmetrics, 2023, vol. 34, issue 5
Abstract:
We propose a nonlinear prediction (NOP) method for functional time series. Conventional methods for functional time series are mainly based on functional principal component analysis or functional regression models. These approaches rely on the stationary or linear assumption of the functional time series. However, real data sets are often nonstationary, and the temporal dependence between trajectories cannot be captured by linear models. Conventional methods are also hard to analyze multivariate functional time series. To tackle these challenges, the NOP method employs a nonlinear mapping for functional data that can be directly applied to multivariate functions without any preprocessing step. The NOP method constructs feature space with forecast information, hence it provides a better ground for predicting future trajectories. The NOP method avoids calculating covariance functions and enables online estimation and prediction. We examine the finite sample performance of the NOP method with simulation studies that consider linear, nonlinear and nonstationary functional time series. The NOP method shows superior prediction performances in comparison with the conventional methods. Three real applications demonstrate the advantages of the NOP method model in predicting air quality, electricity price and mortality rate.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/env.2792
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:34:y:2023:i:5:n:e2792
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().