EconPapers    
Economics at your fingertips  
 

Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules

Sang‐Jun Han and Jung‐Ho Wee

Greenhouse Gases: Science and Technology, 2021, vol. 11, issue 3, 445-460

Abstract: The present study analyzes the features of chemical CO2 absorption using tertiary amine solvents by comparing the absorption performance and electrical properties between methyl‐di‐ethanolamine (MDEA) and tri‐ethanolamine (TEA) systems. The results are mostly attributed to the different structures of the two amine molecules. Absorption performance is significantly affected by the molecular structure and water concentration in the amine solution. The absorption performance of the MDEA system is better than that of TEA, which is basically ascribed to the MDEA molecule's more asymmetric and irregular shape than that of TEA, which thus enhances the catalytic activity of MDEA and the reactivity of the −OH moiety in water. The difference of electrical properties such as ionic conductivities (ICs) of the two protonated amines and real ionic activity coefficients (RIAC) between the two systems might be also caused by the different molecular structures of the two amines. The IC of protonated MDEA is estimated to be 23.70% higher than that of protonated TEA, because of the higher ionic mobility and charge density of MDEA. The RIAC of the MDEA system is higher than that of TEA, which is explained by the different physicochemical interactions between the molecules in the two systems. Since water is one of the reactants in the absorption, its concentration in solution significantly affects the results of the systems. In addition, the absorption using tertiary amine is a base‐catalyzed reaction, and thus variations of the overall absorption rate follow a parabolic curve. Therefore, it is maximized to be 14.2 and 9.8 mmol CO2·L−1·min−1 in the 15 wt% MDEA and TEA solutions, respectively. Finally, the correlated equations for in situ estimation of chemical absorption capacity by electrical conductivity measured during the absorption are derived in the two systems. © 2021 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons, Ltd.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ghg.2059

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:11:y:2021:i:3:p:445-460

Access Statistics for this article

More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:445-460