INSOLVENCY PREDICTION IN THE PRESENCE OF DATA INCONSISTENCIES
A. Mendes,
R. L. Cardoso,
P. C. Mário,
A. L. Martinez and
F. R. Ferreira
Intelligent Systems in Accounting, Finance and Management, 2014, vol. 21, issue 3, 155-167
Abstract:
In this paper we use data inconsistencies as an indicator of financial distress. Traditional models for insolvency prediction normally ignore inconsistent data, either by removing or replacing it. Instead of removing that information, we propose a new variable to capture it; using it together with traditional accounting variables (based on financial ratios) for the purpose of insolvency prediction. Computational tests use three datasets based on the financial results of 2033 Brazilian Health Maintenance Organizations over 7 years (2001 to 2007). Sixteen classification methods were used to evaluate whether or not the new variable impacted solvency prediction. Tests show a statistically significant improvement in classification accuracy – average results improve 1.3 (p = 0.003) and 1.8 (p = 0.006) percentage points, for 10‐fold and leave‐one‐out cross‐validations respectively. In addition, the analysis of false positives and false negatives shows that the new variable reduces the potentially harmful misclassification of false negatives (i.e. financially distressed companies being classified as financially healthy) and also reduces the estimated overall error rate. Regarding the extensibility of the results, even though this work uses data from Brazilian companies only, the calculation of the financial ratios variables, as well as the inconsistencies, could be extended to most companies worldwide subject to governmental accounting regulations aligned with the International Financial Reporting Standards. Copyright © 2014 John Wiley & Sons, Ltd.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/isaf.1352
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:21:y:2014:i:3:p:155-167
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().