EconPapers    
Economics at your fingertips  
 

Evaluating interpretable machine learning predictions for cryptocurrencies

Ahmad El Majzoub, Fethi A. Rabhi and Walayat Hussain

Intelligent Systems in Accounting, Finance and Management, 2023, vol. 30, issue 3, 137-149

Abstract: This study explores various machine learning and deep learning applications on financial data modelling, analysis and prediction processes. The main focus is to test the prediction accuracy of cryptocurrency hourly returns and to explore, analyse and showcase the various interpretability features of the ML models. The study considers the six most dominant cryptocurrencies in the market: Bitcoin, Ethereum, Binance Coin, Cardano, Ripple and Litecoin. The experimental settings explore the formation of the corresponding datasets from technical, fundamental and statistical analysis. The paper compares various existing and enhanced algorithms and explains their results, features and limitations. The algorithms include decision trees, random forests and ensemble methods, SVM, neural networks, single and multiple features N‐BEATS, ARIMA and Google AutoML. From experimental results, we see that predicting cryptocurrency returns is possible. However, prediction algorithms may not generalise for different assets and markets over long periods. There is no clear winner that satisfies all requirements, and the main choice of algorithm will be tied to the user needs and provided resources.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/isaf.1538

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:30:y:2023:i:3:p:137-149

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:30:y:2023:i:3:p:137-149