EconPapers    
Economics at your fingertips  
 

A high‐dimensional multinomial logit model

Didier Nibbering

Journal of Applied Econometrics, 2024, vol. 39, issue 3, 481-497

Abstract: The number of parameters in a standard multinomial logit model increases linearly with the number of choice alternatives and number of explanatory variables. Because many modern applications involve large choice sets with categorical explanatory variables, which enter the model as large sets of binary dummies, the number of parameters in a multinomial logit model is often large. This paper proposes a new method for data‐driven two‐way parameter clustering over outcome categories and explanatory dummy categories in a multinomial logit model. A Bayesian Dirichlet process mixture model encourages parameters to cluster over the categories, which reduces the number of unique model parameters and provides interpretable clusters of categories. In an empirical application, we estimate the holiday preferences of 11 household types over 49 holiday destinations and identify a small number of household segments with different preferences across clusters of holiday destinations.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/jae.3034

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:3:p:481-497

Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252

Access Statistics for this article

Journal of Applied Econometrics is currently edited by M. Hashem Pesaran

More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:japmet:v:39:y:2024:i:3:p:481-497