Agglomerative hierarchical clustering for selecting valid instrumental variables
Nicolas Apfel and
Xiaoran Liang
Journal of Applied Econometrics, 2024, vol. 39, issue 7, 1201-1219
Abstract:
We propose a procedure that combines hierarchical clustering with a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of IVs. Some of these IVs may be invalid in that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Unlike existing techniques, our work deals with multiple endogenous regressors. Simulation results suggest an advantageous performance of the method in various settings. The method is applied to estimating the effect of immigration on wages.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.3078
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:7:p:1201-1219
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().