Multivariate Time Series Model with Hierarchical Structure for Over‐Dispersed Discrete Outcomes
Nobuhiko Terui and
Masataka Ban
Journal of Forecasting, 2014, vol. 33, issue 5, 376-390
Abstract:
ABSTRACT In this paper, we propose a multivariate time series model for over‐dispersed discrete data to explore the market structure based on sales count dynamics. We first discuss the microstructure to show that over‐dispersion is inherent in the modeling of market structure based on sales count data. The model is built on the likelihood function induced by decomposing sales count response variables according to products' competitiveness and conditioning on their sum of variables, and it augments them to higher levels by using the Poisson–multinomial relationship in a hierarchical way, represented as a tree structure for the market definition. State space priors are applied to the structured likelihood to develop dynamic generalized linear models for discrete outcomes. For the over‐dispersion problem, gamma compound Poisson variables for product sales counts and Dirichlet compound multinomial variables for their shares are connected in a hierarchical fashion. Instead of the density function of compound distributions, we propose a data augmentation approach for more efficient posterior computations in terms of the generated augmented variables, particularly for generating forecasts and predictive density. We present the empirical application using weekly product sales time series in a store to compare the proposed models accommodating over‐dispersion with alternative no over‐dispersed models by several model selection criteria, including in‐sample fit, out‐of‐sample forecasting errors and information criterion. The empirical results show that the proposed modeling works well for the over‐dispersed models based on compound Poisson variables and they provide improved results compared with models with no consideration of over‐dispersion. Copyright © 2014 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:33:y:2014:i:5:p:376-390
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().