Macroeconomic real‐time forecasts of univariate models with flexible error structures
Kelly Trinh,
Bo Zhang and
Chenghan Hou
Journal of Forecasting, 2025, vol. 44, issue 1, 59-78
Abstract:
This paper investigates the importance of flexible error structure specifications in two widely used univariate models, namely, autoregressive and unobserved component models, in fitting and forecasting 20 significant US macroeconomic variables. The in‐sample estimation reveals that the models with flexible error structures provide better in‐sample fit than the univariate models with homoscedastic errors. Furthermore, the density forecast analysis suggests that accommodating heavy tail, stochastic volatility, and serial correlation in error structures leads to significant improvements in short‐term forecasts. For most macroeconomic variables, the univariate models tend to yield more accurate one‐step‐ahead forecasts than the multivariate (vector autoregressive) models in terms of both point and density forecasts.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3182
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:44:y:2025:i:1:p:59-78
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().