Exact algorithms and bounds for the dynamic assignment interdiction problem
Jorge A. Sefair and
J. Cole Smith
Naval Research Logistics (NRL), 2017, vol. 64, issue 5, 373-387
Abstract:
We study a multi‐stage dynamic assignment interdiction (DAI) game in which two agents, a user and an attacker, compete in the underlying bipartite assignment graph. The user wishes to assign a set of tasks at the minimum cost, and the attacker seeks to interdict a subset of arcs to maximize the user's objective. The user assigns exactly one task per stage, and the assignment costs and interdiction impacts vary across stages. Before any stage commences in the game, the attacker can interdict arcs subject to a cardinality constraint. An interdicted arc can still be used by the user, but at an increased assignment cost. The goal is to find an optimal sequence of assignments, coupled with the attacker's optimal interdiction strategy. We prove that this problem is strongly NP‐hard, even when the attacker can interdict only one arc. We propose an exact exponential‐state dynamic‐programming algorithm for this problem as well as lower and upper bounds on the optimal objective function value. Our bounds are based on classical interdiction and robust optimization models, and on variations of the DAI game. We examine the efficiency of our algorithms and the quality of our bounds on a set of randomly generated instances. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 373–387, 2017
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/nav.21753
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:64:y:2017:i:5:p:373-387
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().