Quantifying noise in survey expectations
Artūras Juodis and
Simas Kučinskas
Quantitative Economics, 2023, vol. 14, issue 2, 609-650
Abstract:
Expectations affect economic decisions, and inaccurate expectations are costly. Expectations can be wrong due to either bias (systematic mistakes) or noise (unsystematic mistakes). We develop a framework for quantifying the level of noise in survey expectations. The method is based on the insight that theoretical models of expectation formation predict a factor structure for individual expectations. Using data from professional forecasters, we find that the magnitude of noise is large (10%–30% of forecast MSE) and comparable to bias. We illustrate how our estimates can be applied to calibrate models with incomplete information and bound the effects of measurement error.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.3982/QE1633
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:14:y:2023:i:2:p:609-650
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().