Generalized Partially Linear Single-Index Models
R.J. Carroll,
Jianqing Fan,
Irene. Gijbels and
M.P. Wand
Statistics Working Paper from Australian Graduate School of Management
Abstract:
The typical generalized linear model for a regression of a response Y on predictors (X,Z) has conditional mean function based upon a linear combination of (X,Z). We generalize these models to have a nonparametric component, replacing the linear combination $\alpha_0^T X + \beta_0^T Z$ by $\eta_0(\alpha_0^T X) + \beta_0^T Z$, where $\eta_0(.)$ is an unknown function. These are the {\it generalized partially linear single-index models}. The models also generalize the ``single-index'' models, which have $\beta_03D0$. Using local linear methods, estimates of the unknown parameters $(\alpha_0,\beta_0)$ and the unknown function $\eta_0(.)$ are proposed, and their asymptotic distributions obtained. An example illustrates the algorithms and the models.
References: Add references at CitEc
Citations: View citations in EconPapers (8)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:agsmst:95010
Access Statistics for this paper
More papers in Statistics Working Paper from Australian Graduate School of Management Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().