PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH
Guillaume M. J-B. Chaslot (),
Mark H. M. Winands (),
H. Jaap van Den Herik (),
Jos W. H. M. Uiterwijk () and
Bruno Bouzy ()
Additional contact information
Guillaume M. J-B. Chaslot: MICC-IKAT, Games and AI Group, Faculty of Humanities and Sciences, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
Mark H. M. Winands: MICC-IKAT, Games and AI Group, Faculty of Humanities and Sciences, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
H. Jaap van Den Herik: MICC-IKAT, Games and AI Group, Faculty of Humanities and Sciences, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
Jos W. H. M. Uiterwijk: MICC-IKAT, Games and AI Group, Faculty of Humanities and Sciences, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
Bruno Bouzy: Centre de Recherche en Informatique de Paris 5, Université Paris 5 Descartes, 45, rue des Saints Pères, 75270 Cedex 06, France
New Mathematics and Natural Computation (NMNC), 2008, vol. 04, issue 03, 343-357
Abstract:
Monte-Carlo Tree Search (MCTS) is a new best-first search guided by the results of Monte-Carlo simulations. In this article, we introduce twoprogressive strategiesfor MCTS, called progressive bias and progressive unpruning. They enable the use of relatively time-expensive heuristic knowledge without speed reduction. Progressive bias directs the search according to heuristic knowledge. Progressive unpruning first reduces the branching factor, and then increases it gradually again. Experiments assess that the two progressive strategies significantly improve the level of our Go programMango. Moreover, we see that the combination of both strategies performs even better on larger board sizes.
Keywords: Monte-Carlo Tree Search; heuristic search; Computer Go (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S1793005708001094
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:nmncxx:v:04:y:2008:i:03:n:s1793005708001094
Ordering information: This journal article can be ordered from
DOI: 10.1142/S1793005708001094
Access Statistics for this article
New Mathematics and Natural Computation (NMNC) is currently edited by Paul P Wang
More articles in New Mathematics and Natural Computation (NMNC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().