EconPapers    
Economics at your fingertips  
 

Data Science: A New Paradigm in the Age of Big-Data Science and Analytics

Claude E. Concolato () and Li M. Chen ()
Additional contact information
Claude E. Concolato: Department of Computer Science and Information Technology, University of District of Columbia, Washington, DC 20008, USA
Li M. Chen: Department of Computer Science and Information Technology, University of District of Columbia, Washington, DC 20008, USA

New Mathematics and Natural Computation (NMNC), 2017, vol. 13, issue 02, 119-143

Abstract: As an emergent field of inquiry, Data Science serves both the information technology world and the applied sciences. Data Science is a known term that tends to be synonymous with the term Big-Data; however, Data Science is the application of solutions found through mathematical and computational research while Big-Data Science describes problems concerning the analysis of data with respect to volume, variation, and velocity (3V). Even though there is not much developed in theory from a scientific perspective for Data Science, there is still great opportunity for tremendous growth. Data Science is proving to be of paramount importance to the IT industry due to the increased need for understanding the insurmountable amount of data being produced and in need of analysis. In short, data is everywhere with various formats. Scientists are currently using statistical and AI analysis techniques like machine learning methods to understand massive sets of data, and naturally, they attempt to find relationships among datasets. In the past 10 years, the development of software systems within the cloud computing paradigm using tools like Hadoop and Apache Spark have aided in making tremendous advances to Data Science as a discipline [Z. Sun, L. Sun and K. Strang, Big data analytics services for enhancing business intelligence, Journal of Computer Information Systems (2016), doi: 10.1080/08874417.2016.1220239]. These advances enabled both scientists and IT professionals to use cloud computing infrastructure to process petabytes of data on daily basis. This is especially true for large private companies such as Walmart, Nvidia, and Google. This paper seeks to address pragmatic ways of looking at how Data Science — with respect to Big-Data Science — is practiced in the modern world. We also examine how mathematics and computer science help shape Big-Data Science’s terrain. We will highlight how mathematics and computer science have significantly impacted the development of Data Science approaches, tools, and how those approaches pose new questions that can drive new research areas within these core disciplines involving data analysis, machine learning, and visualization.

Keywords: Data Science; Hadoop and Spark; proposal on scientific nomenclature; Big-Data; Data Analytics; data structure; technology assessment; IT industry; 3V; machine learning; AI; classifications; debate on Big-Data Science (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S1793005717400038
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:nmncxx:v:13:y:2017:i:02:n:s1793005717400038

Ordering information: This journal article can be ordered from

DOI: 10.1142/S1793005717400038

Access Statistics for this article

New Mathematics and Natural Computation (NMNC) is currently edited by Paul P Wang

More articles in New Mathematics and Natural Computation (NMNC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:nmncxx:v:13:y:2017:i:02:n:s1793005717400038