Collusion among autonomous pricing algorithms utilizing function approximation methods
Malte Jeschonneck
No 370, DICE Discussion Papers from Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE)
Abstract:
The increased prevalence of pricing algorithms incited an ongoing debate about new forms of collusion. The concern is that intelligent algorithms may be able to forge collusive schemes without being explicitly instructed to do so. I attempt to examine the ability of reinforcement learning algorithms to maintain collusive prices in a simulated oligopoly of price competition. To my knowledge, this study is the first to use a reinforcement learning system with linear function approximation and eligibility traces in an economic environment. I show that the deployed agents sustain supra-competitive prices, but tend to be exploitable by deviating agents in the short-term. The price level upon convergence crucially hinges on the utilized method to estimate the qualities of actions. These findings are robust to variations of parameters that control the learning process and the environment.
Date: 2021
New Economics Papers: this item is included in nep-com, nep-ind, nep-isf and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/240913/1/1770068007.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:dicedp:370
Access Statistics for this paper
More papers in DICE Discussion Papers from Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().