Estimation of linear and non-linear indicators using interval censored income data
Paul Walter,
Markus Groß,
Timo Schmid and
Nikos Tzavidis
No 2017/22, Discussion Papers from Free University Berlin, School of Business & Economics
Abstract:
Among a variety of small area estimation methods, one popular approach for the estimation of linear and non-linear indicators is the empirical best predictor. However, parameter estimation using standard maximum likelihood methods is not possible, when the dependent variable of the underlying nested error regression model, is censored to specific intervals. This is often the case for income variables. Therefore, this work proposes an estimation method, which enables the estimation of the regression parameters of the nested error regression model using interval censored data. The introduced method is based on the stochastic expectation maximization algorithm. Since the stochastic expectation maximization method relies on the Gaussian assumptions of the error terms, transformations are incorporated into the algorithm to handle departures from normality. The estimation of the mean squared error of the empirical best predictors is facilitated by a parametric bootstrap which captures the additional uncertainty coming from the interval censored dependent variable. The validity of the proposed method is validated by extensive model-based simulations.
Keywords: small area estimation; empirical best predictor; nested error regression model; grouped data (search for similar items in EconPapers)
Date: 2017
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/167633/1/895694956.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:fubsbe:201722
Access Statistics for this paper
More papers in Discussion Papers from Free University Berlin, School of Business & Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().