Which Model for Poverty Predictions?
Paolo Verme
No 468, GLO Discussion Paper Series from Global Labor Organization (GLO)
Abstract:
OLS models are the predominant choice for poverty predictions in a variety of contexts such as proxy-means tests, poverty mapping or cross-survey impu- tations. This paper compares the performance of econometric and machine learning models in predicting poverty using alternative objective functions and stochastic dominance analysis based on coverage curves. It finds that the choice of an optimal model largely depends on the distribution of incomes and the poverty line. Comparing the performance of different econometric and machine learning models is therefore an important step in the process of opti- mizing poverty predictions and targeting ratios.
Keywords: Welfare Modelling; Income Distributions; Poverty Predictions; Imputations (search for similar items in EconPapers)
JEL-codes: D31 D63 E64 O15 (search for similar items in EconPapers)
Date: 2020
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/213811/1/GLO-DP-0468.pdf (application/pdf)
Related works:
Working Paper: Which Model for Poverty Predictions? (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:glodps:468
Access Statistics for this paper
More papers in GLO Discussion Paper Series from Global Labor Organization (GLO) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().