Inferences for a Partially Varying Coefficient Model With Endogenous Regressors
Zongwu Cai,
Ying Fang,
Ming Lin and
Jia Su
No 2018-047, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
In this article, we propose a new class of semiparametric instrumental variable models with partially varying coefficients, in which the structural function has a partially linear form and the impact of endogenous structural variables can vary over different levels of some exogenous variables. We propose a three-step estimation procedure to estimate both functional and constant coefficients. The consistency and asymptotic normality of these proposed estimators are established. Moreover, a generalized F-test is developed to test whether the functional coefficients are of particular parametric forms with some underlying economic intuitions, and furthermore, the limiting distribution of the proposed generalized F-test statistic under the null hypothesis is established. Finally, we illustrate the finite sample performance of our approach with simulations and two real data examples in economics.
Keywords: Endogeneity; Functional coefficients; Generalized F-test; Instrumental variables models; Nonparametric test; Profile least squares (search for similar items in EconPapers)
JEL-codes: C00 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230758/1/irtg1792dp2018-047.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2018047
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().