Analysing and predicting micro-location patterns of software firms
Jan Kinne () and
Bernd Resch
No 17-063, ZEW Discussion Papers from ZEW - Leibniz Centre for European Economic Research
Abstract:
While the effects of non-geographic aggregation on inference are well studied in economics, research on geographic aggregation is rather scarce. This knowledge gap together with the use of aggregated spatial units in previous firm location studies result in a lack of understanding of firm location determinants at the microgeographic level. Suitable data for microgeographic location analysis has become available only recently through the emergence of Volunteered Geographic Information (VGI), especially the OpenStreetMap (OSM) project, and the increasing availability of official (open) geodata. In this paper, we use a comprehensive dataset of three million street-level geocoded firm observations to explore the location pattern of software firms in an Exploratory Spatial Data Analysis (ESDA). Based on the ESDA results, we develop a software firm location prediction model using Poisson regression and OSM data. Our findings demonstrate that the model yields plausible predictions and OSM data is suitable for microgeographic location analysis. Our results also show that non-aggregated data can be used to detect information on location determinants, which are superimposed when aggregated spatial units are analysed, and that some findings of previous firm location studies are not robust at the microgeographic level. However, we also conclude that the lack of high-resolution geodata on socio-economic population characteristics causes systematic prediction errors, especially in cities with diverse and segregated populations.
Keywords: Firm Location; Location Factors; Software Industry; Microgeography; OpenStreetMap (OSM); Prediction; Volunteered Geographic Information (VGI) (search for similar items in EconPapers)
JEL-codes: L86 R12 R30 (search for similar items in EconPapers)
Date: 2017
New Economics Papers: this item is included in nep-big, nep-geo and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/172000/1/1007199741.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:zewdip:17063
Access Statistics for this paper
More papers in ZEW Discussion Papers from ZEW - Leibniz Centre for European Economic Research Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().