Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate
Mohamed A. Yassin,
A.A. Alazba and
Mohamed A. Mattar
Agricultural Water Management, 2016, vol. 163, issue C, 110-124
Abstract:
Artificial neural networks (ANNs) and gene expression programming (GEP) were compared to estimate daily reference evapotranspiration (ETref) under arid conditions. The daily climatic variables were collected by 13 meteorological stations from 1980 to 2010. The ANN and GEP models were trained on 65% of the climatic data and tested using the remaining 35%. The generalised Penman–Monteith (PMG) model was used as a reference target for evapotranspiration values, with hc varies from 5 to 105cm with increment of a centimetre. The developed models were spatially validated using climatic data from 1980 to 2010 taken from another six meteorological stations. The results showed that the eight ETref models developed using the ANN technique were slightly more accurate than those developed using the GEP technique. The ANN models’ determination coefficients (R2) ranged from 67.6% to 99.8% and root mean square error (RMSE) values ranged from 0.20 to 2.95mmd-1. The GEP models’ R2 values ranged from 64.4% to 95.5% and RMSE values ranged from 1.13 to 3.1mmd-1. Although the GEP models performed slightly worse than the ANN models, the GEP models used explicit equations.
Keywords: Reference evapotranspiration; Penman–Monteith; Artificial intelligence; Arid environments (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377415301013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:163:y:2016:i:c:p:110-124
DOI: 10.1016/j.agwat.2015.09.009
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().