EconPapers    
Economics at your fingertips  
 

Deep Learning for Distribution Channels' Management

Sabina-Cristiana Necula ()

Informatica Economica, 2017, vol. 21, issue 4, 73-84

Abstract: This paper presents an experiment of using deep learning models for distribution channel management. We present an approach that combines self-organizing maps with artificial neural network with multiple hidden layers in order to identify the potential sales that might be addressed for channel distribution change/ management. Our study aims to highlight the evolution of techniques from simple features/learners to more complex learners and feature engineering or sampling techniques. This paper will allow researchers to choose best suited techniques and features to prepare their churn prediction models.

Keywords: Artificial Neural Network; Distribution Channel; Self-Organizing Maps; Deep Learning (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://revistaie.ase.ro/content/84/06%20-%20necula.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:aes:infoec:v:21:y:2017:i:4:p:73-84

Access Statistics for this article

Informatica Economica is currently edited by Ion Ivan

More articles in Informatica Economica from Academy of Economic Studies - Bucharest, Romania Contact information at EDIRC.
Bibliographic data for series maintained by Paul Pocatilu ().

 
Page updated 2025-03-19
Handle: RePEc:aes:infoec:v:21:y:2017:i:4:p:73-84