Estimating Latent Variable Models When the Latent Variable is Observable
James K. Binkley and
Luis M. Pena-Levano
No 205659, 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California from Agricultural and Applied Economics Association
Abstract:
Logit and probit models are designed to estimate latent variable models. However, there are cases that these estimates are used, even though the latent variable is fully observable. The most prominent examples are studies about obesity, where they calculate BMI based on two observed variables: weight and height squared. They translate BMI into a binary variable (e.g. obese or not obese) and this index is used to examine factors affecting obesity. This study determines the loss in efficiency of using logit/probit models versus the conventional OLS (e.g. with unknown variance). We also compare the marginal effects between these models. The results suggest that OLS is a more efficient than the logit/probit models when estimating the true coefficients, regardless of the multicollinearity, fit of regression and cut-off probability. Likewise, OLS provided unbiased marginal effects compared to both binary response models. It is also less likely to be biased. We can conclude, that according to our Monte Carlo simulation, when the latent variable is observable, it is better to use the continous value and regress it with respect to their explanatory variable instead of converting it into a latent variable.
Keywords: Food Consumption/Nutrition/Food Safety; Research Methods/Statistical Methods (search for similar items in EconPapers)
Date: 2015
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ageconsearch.umn.edu/record/205659/files/A ... 0is%20Observable.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ags:aaea15:205659
DOI: 10.22004/ag.econ.205659
Access Statistics for this paper
More papers in 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California from Agricultural and Applied Economics Association Contact information at EDIRC.
Bibliographic data for series maintained by AgEcon Search ().