Generalization error for Tweedie models: decomposition and error reduction with bagging
Michel Denuit and
Julien Trufin
Additional contact information
Michel Denuit: Université catholique de Louvain, LIDAM/ISBA, Belgium
Julien Trufin: Université Libre de Bruxelles
No 2021025, LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Abstract:
Wüthrich and Buser (DOI:10.2139/ssrn.2870308, 2020) studied the generalization error for Poisson regression models. This short note aims to extend their results to the Tweedie family of distributions, to which the Poisson law belongs. In case of bagging, a new condition emerges that becomes increasingly binding with the power parameter involved in the Tweedie variance function.
Keywords: Generalization error; Supervised learning; Exponential dispersion family; Tweedie; Bagging (search for similar items in EconPapers)
Pages: 7
Date: 2021-02-08
Note: In: European Actuarial Journal, 2021, vol. 11, p. 325-331
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvar:2021025
DOI: 10.1007/s13385-021-00265-2
Access Statistics for this paper
More papers in LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().