A lasso-type estimation for the Lorenz regression
Alexandre Jacquemain,
Cédric Heuchenne and
Eugen Pircalabelu
Additional contact information
Alexandre Jacquemain: Université catholique de Louvain, LIDAM/ISBA, Belgium
Cédric Heuchenne: University of Liège
Eugen Pircalabelu: Université catholique de Louvain, LIDAM/ISBA, Belgium
No 2021027, LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Abstract:
The Lorenz regression procedure aims to estimate the explained Gini coefficient, a quantity with a natural application in the field of inequality of opportunity. In this paper, we introduce a lasso-type estimator for the explained Gini coefficient and discuss the selection of the regularization parameter. The performance of the procedure is compared to an oracle estimator on simulated data. Finally, an illustration on real-data is provided.
Keywords: Lorenz curve; Inequality of opportunity; Single-index models; LASSO; FABS algorithm (search for similar items in EconPapers)
Pages: 5
Date: 2021-06-29
Note: In: Proceedings of the 22nd European Young Statistician Meeting, 2021, p. 41-45
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvar:2021027
Access Statistics for this paper
More papers in LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().