Does autocalibration improve goodness of lift?
Nicolas Ciatto,
Harrison Verelst,
Julien Trufin and
Michel Denuit
Additional contact information
Nicolas Ciatto: Université Libre de Bruxelles
Harrison Verelst: Université Libre de Bruxelles
Julien Trufin: Université Libre de Bruxelles
Michel Denuit: Université catholique de Louvain, LIDAM/ISBA, Belgium
No 2023007, LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Abstract:
Autocalibration is a desirable property since it ensures that the information contained in a candidate premium is used without any bias. It turns out to be intimately related to the method of marginal totals that predates modern risk classification methods. The present note aims to assess the impact of autocalibration on the goodness of lift. It is shown on a case study that autocalibration does not only restore global and local balances but also improve lift.
Keywords: Risk classification; Ratemaking; Autocalibration; Lift curve (search for similar items in EconPapers)
Pages: 8
Date: 2023-05-01
Note: In: European Actuarial Journal, 2023, vol. 13(1), p. 479-486
References: Add references at CitEc
Citations: View citations in EconPapers (2)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvar:2023007
DOI: 10.1007/s13385-022-00330-4
Access Statistics for this paper
More papers in LIDAM Reprints ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().