EconPapers    
Economics at your fingertips  
 

Multi-K KNN regression with bootstrap aggregation: Accurate predictions and alternative prediction intervals

Soraida Sriprasert () and Patchanok Srisuradetchai ()

Edelweiss Applied Science and Technology, 2025, vol. 9, issue 5, 2750-2764

Abstract: The k-nearest neighbors (KNN) algorithm is widely recognized for its simplicity and flexibility in modeling complex, non-linear relationships; however, standard KNN regression does not inherently provide prediction intervals (PIs), presenting a persistent challenge for uncertainty quantification. This study introduces a bootstrap-based multi-K approach specifically designed to construct robust prediction intervals in KNN regression. By systematically aggregating predictions across multiple neighborhood sizes through ensemble techniques and bootstrap resampling, the method effectively quantifies prediction uncertainty, particularly in challenging high-dimensional scenarios. Evaluations conducted on 15 diverse datasets spanning education, healthcare, chemistry, economics, and social sciences reveal that the proposed approach consistently achieves competitive predictive accuracy compared to traditional regression methods. Although traditional regression produces wider intervals with higher coverage probabilities, the proposed bootstrap-based KNN method generates notably tighter intervals, enhancing interpretability and practical utility. Despite occasionally reduced coverage probabilities, especially in high-dimensional contexts, the proposed methodology effectively balances precision and predictive coverage. Practically, this multi-K bootstrap approach provides researchers and practitioners with an effective and interpretable method for robust uncertainty quantification in complex predictive modeling tasks.

Keywords: Bootstrapping; Ensemble methods; K-nearest neighbors; KNN regression; Machine learning; Non-parametric regression; Prediction intervals; Uncertainty quantification. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://learning-gate.com/index.php/2576-8484/article/view/7589/2598 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ajp:edwast:v:9:y:2025:i:5:p:2750-2764:id:7589

Access Statistics for this article

More articles in Edelweiss Applied Science and Technology from Learning Gate
Bibliographic data for series maintained by Melissa Fernandes ().

 
Page updated 2025-05-28
Handle: RePEc:ajp:edwast:v:9:y:2025:i:5:p:2750-2764:id:7589