EconPapers    
Economics at your fingertips  
 

Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions

Xiaohong Chen and Timothy M. Christensen

No 46/14, CeMMAP working papers from Institute for Fiscal Studies

Abstract: We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)–p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate is achieved even for heavy-tailed martingale difference errors with finite (2 + (d=p))th absolute moment for d=p

Date: 2014-12-22
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP4614.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:46/14

DOI: 10.1920/wp.cem.2014.4614

Access Statistics for this paper

More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().

 
Page updated 2025-03-19
Handle: RePEc:azt:cemmap:46/14