EconPapers    
Economics at your fingertips  
 

Program evaluation with high-dimensional data

Alexandre Belloni, Victor Chernozhukov, Ivan Fernandez-Val and Christian Hansen

No 55/15, CeMMAP working papers from Institute for Fiscal Studies

Abstract: In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment, heterogeneous treatment effects, and function-valued outcomes. Our framework covers the special case of exogenous receipt of treatment, either conditional on controls or unconditionally as in randomized control trials. In the latter case, our approach produces efficient estimators and honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE). To make informative inference possible, we assume that key reduced form predictive relationships are approximately sparse. This assumption allows the use of regularization and selection methods to estimate those relations, and we provide methods for post-regularization and post-selection inference that are uniformly valid (honest) across a wide-range of models. We show that a key ingredient enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating certain reduced form functional parameters. We illustrate the use of the proposed methods with an application to estimating the effect of 401(k) eligibility and participation on accumulated assets. The results on program evaluation are obtained as a consequence of more general results on honest inference in a general moment condition framework, where we work with possibly a continuum of moments. We provide results on honest inference for (function-valued) parameters within this general framework where modern machine learning methods are used to fit the nonparametric/highdimensional components of the model. These include a number of supporting new results that are of major independent interest: namely, we (1) prove uniform validity of a multiplier bootstrap, (2) offer a uniformly valid functional delta method, and (3) provide results for sparsity-based estimation of regression functions for function-valued outcomes.

Date: 2015-09-22
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP5515.pdf (application/pdf)

Related works:
Working Paper: Program evaluation with high-dimensional data (2015) Downloads
Working Paper: Program evaluation with high-dimensional data (2014) Downloads
Working Paper: Program evaluation with high-dimensional data (2014) Downloads
Working Paper: Program evaluation with high-dimensional data (2013) Downloads
Working Paper: Program evaluation with high-dimensional data (2013) Downloads
Working Paper: Program evaluation with high-dimensional data (2013) Downloads
Working Paper: Program evaluation with high-dimensional data (2013) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:azt:cemmap:55/15

DOI: 10.1920/wp.cem.2015.5515

Access Statistics for this paper

More papers in CeMMAP working papers from Institute for Fiscal Studies Contact information at EDIRC.
Bibliographic data for series maintained by Dermot Watson ().

 
Page updated 2025-04-07
Handle: RePEc:azt:cemmap:55/15