Enhancing inflation nowcasting with online search data: a random forest application for Colombia
Felipe Roldán-Ferrín and
Julián Parra-Polanía
Borradores de Economia from Banco de la Republica de Colombia
Abstract:
This paper evaluates the predictive capacity of a machine learning model based on Random Forests (RF), combined with Google Trends (GT) data, for nowcasting monthly inflation in Colombia. The proposed RF-GT model is trained using historical inflation data, macroeconomic indicators, and internet search activity. After optimizing the model’s hyperparameters through time series cross-validation, we assess its out-of-sample performance over the period 2023–2024. The results are benchmarked against traditional approaches, including SARIMA, Ridge, and Lasso regressions, as well as professional forecasts from the Banco de la República’s monthly survey of financial analysts (MES). In terms of forecast accuracy, the RF-GT model consistently outperforms the statistical models and performs comparably to the analysts’ median forecast, while offering the additional advantage of producing predictions approximately one and a half weeks earlier. These findings highlight the practical value of integrating alternative data sources and machine learning techniques into the inflation monitoring toolkit of emerging economies. *****RESUMEN: Este artículo evalúa la capacidad predictiva de un modelo de aprendizaje automático basado en Random Forest (RF), combinado con datos de Google Trends (GT), para realizar nowcasting de la inflación mensual en Colombia. El modelo propuesto, denominado RF-GT, se entrena utilizando datos históricos de inflación, indicadores macroeconómicos y actividad de búsqueda en internet. Tras la optimización de los hiperparámetros mediante validación cruzada para series de tiempo, se evalúa su desempeño fuera de muestra durante el periodo 2023–2024. Los resultados se comparan con enfoques tradicionales, incluidos los modelos SARIMA, regresiones Ridge y Lasso, así como con los pronósticos profesionales de la Encuesta Mensual de Expectativas (EME) del Banco de la República. En términos de precisión predictiva, el modelo RF-GT supera de forma consistente a los modelos estadísticos y muestra un desempeño comparable al pronóstico mediano de los analistas, con la ventaja adicional de generar predicciones aproximadamente semana y media antes. Estos hallazgos destacan el valor práctico de integrar fuentes de datos alternativas y técnicas de aprendizaje automático en los sistemas de monitoreo de inflación de economías emergentes.
Keywords: Inflation; Nowcasting; Forecasting; Random Forest; Google Trends; Machine Learning; Inflación; Pronóstico en Tiempo Real; Pronóstico; Bosques Aleatorios; Tendencias de Google; aprendizaje automático (search for similar items in EconPapers)
JEL-codes: C14 C53 E17 E31 E37 (search for similar items in EconPapers)
Pages: 18
Date: 2025-07
New Economics Papers: this item is included in nep-ets
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.32468/be.1318
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bdr:borrec:1318
Access Statistics for this paper
More papers in Borradores de Economia from Banco de la Republica de Colombia Cra 7 # 14-78. Contact information at EDIRC.
Bibliographic data for series maintained by Clorith Angélica Bahos Olivera ().