Evaluation of Tigernut Waste for Production of Bioproducts
Adejoju Omodolapo Adedara,
Helen Olayinka Ogunsuyi and
Christiana Arinola Akinnawo
Additional contact information
Adejoju Omodolapo Adedara: Department of Chemistry, School of Sciences, The Federal University of Technology, PMB 704,Akure, Nigeria
Helen Olayinka Ogunsuyi: Department of Chemistry, School of Sciences, The Federal University of Technology, PMB 704,Akure, Nigeria
Christiana Arinola Akinnawo: Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, South Africa
International Journal of Research and Scientific Innovation, 2020, vol. 7, issue 2, 253-260
Abstract:
Conversion of biomass into fuels and value added bioproducts is highly essential considering the menace of the pollution associated with fossil sourced fuels and Chemicals. Biomass conversion technology is an emerging innovation in the global energy sector. Besides the inherent advantages identified with biomass resources such as renewability, abundance and intoxicity, the resource is a means of sure way of growing national economy. In this study, assessment of monomeric sugars in tigernut chaff and its potential for the production of some bioproducts (biodiesel and bioethanol) was investigated. Tigernut chaff was defatted by solvent extraction method; the oil was trans-esterified using homogenous and heterogeneous catalyst obtained from waste chicken egg shell. The biodiesel production was optimized by varying the reaction time, catalyst type and concentration. The defatted chaff was hydrolysed using 4% H2SO4. The effect of particle size and reaction time on the release of monomeric sugars as well as sugar degradation products in the hydrolyzed sample was evaluated. Identification and quantification of the monomeric sugar was done using a dual wavelength UV-Visible spectrophotometer. The hydrolysed biomass was fermented to bioethanol using Saccharomyces cerevisea and the crude bioethanol was purified with Bio-CaO. From the results obtained, the optimum yield of the biodiesel was established at 0.9 w/v catalyst concentration, 600C reaction temperature and 60min reaction time with potassium methoxide catalyst. The properties of the biodiesel obtained were consistent with the specifications of American Standard for Biodiesel Testing Materials (ASTM D 6751). The hydrolysis was found to be most effective at 1.11μm particle size and 120 min reaction time. The results revealed that tigernut waste can be used to produce biofuels and also as platform material for domestic and industrial purposes due to the concentration of monomeric sugar present it contains.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.rsisinternational.org/journals/ijrsi/d ... -issue-2/253-260.pdf (application/pdf)
https://www.rsisinternational.org/virtual-library/ ... t&utm_campaign=First (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bjc:journl:v:7:y:2020:i:2:p:253-260
Access Statistics for this article
International Journal of Research and Scientific Innovation is currently edited by Dr. Renu Malsaria
More articles in International Journal of Research and Scientific Innovation from International Journal of Research and Scientific Innovation (IJRSI)
Bibliographic data for series maintained by Dr. Renu Malsaria ().