Multiple Imputation for Multivariate Data with Missing and Below‐Threshold Measurements: Time‐Series Concentrations of Pollutants in the Arctic
Philip K. Hopke,
Chuanhai Liu and
Donald B. Rubin
Biometrics, 2001, vol. 57, issue 1, 22-33
Abstract:
Summary. Many chemical and environmental data sets are complicated by the existence of fully missing values or censored values known to lie below detection thresholds. For example, week‐long samples of airborne particulate matter were obtained at Alert, NWT, Canada, between 1980 and 1991, where some of the concentrations of 24 particulate constituents were coarsened in the sense of being either fully missing or below detection limits. To facilitate scientific analysis, it is appealing to create complete data by filling in missing values so that standard complete‐data methods can be applied. We briefly review commonly used strategies for handling missing values and focus on the multiple‐imputation approach, which generally leads to valid inferences when faced with missing data. Three statistical models are developed for multiply imputing the missing values of airborne particulate matter. We expect that these models are useful for creating multiple imputations in a variety of incomplete multivariate time series data sets.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/j.0006-341X.2001.00022.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:57:y:2001:i:1:p:22-33
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().