Mixed effects models for recurrent events data with partially observed time-varying covariates: Ecological momentary assessment of smoking
Stephen L. Rathbun and
Saul Shiffman
Biometrics, 2016, vol. 72, issue 1, 46-55
Abstract:
type="main" xml:lang="en">
Cigarette smoking is a prototypical example of a recurrent event. The pattern of recurrent smoking events may depend on time-varying covariates including mood and environmental variables. Fixed effects and frailty models for recurrent events data assume that smokers have a common association with time-varying covariates. We develop a mixed effects version of a recurrent events model that may be used to describe variation among smokers in how they respond to those covariates, potentially leading to the development of individual-based smoking cessation therapies. Our method extends the modified EM algorithm of Steele (1996) for generalized mixed models to recurrent events data with partially observed time-varying covariates. It is offered as an alternative to the method of Rizopoulos, Verbeke, and Lesaffre (2009) who extended Steele's (1996) algorithm to a joint-model for the recurrent events data and time-varying covariates. Our approach does not require a model for the time-varying covariates, but instead assumes that the time-varying covariates are sampled according to a Poisson point process with known intensity. Our methods are well suited to data collected using Ecological Momentary Assessment (EMA), a method of data collection widely used in the behavioral sciences to collect data on emotional state and recurrent events in the every-day environments of study subjects using electronic devices such as Personal Digital Assistants (PDA) or smart phones.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:1:p:46-55
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().