EconPapers    
Economics at your fingertips  
 

On assessing binary regression models based on ungrouped data

Chunling Lu and Yuhong Yang

Biometrics, 2019, vol. 75, issue 1, 5-12

Abstract: Assessing a binary regression model based on ungrouped data is a commonly encountered but very challenging problem. Although tests, such as Hosmer–Lemeshow test and le Cessie–van Houwelingen test, have been devised and widely used in applications, they often have low power in detecting lack of fit and not much theoretical justification has been made on when they can work well. In this article, we propose a new approach based on a cross‐validation voting system to address the problem. In addition to a theoretical guarantee that the probabilities of type I and II errors both converge to zero as the sample size increases for the new method under proper conditions, our simulation results demonstrate that it performs very well.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.12969

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:1:p:5-12

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:5-12