Penalized survival models for the analysis of alternating recurrent event data
Lili Wang,
Kevin He and
Douglas E. Schaubel
Biometrics, 2020, vol. 76, issue 2, 448-459
Abstract:
Recurrent event data are widely encountered in clinical and observational studies. Most methods for recurrent events treat the outcome as a point process and, as such, neglect any associated event duration. This generally leads to a less informative and potentially biased analysis. We propose a joint model for the recurrent event rate (of incidence) and duration. The two processes are linked through a bivariate normal frailty. For example, when the event is hospitalization, we can treat the time to admission and length‐of‐stay as two alternating recurrent events. In our method, the regression parameters are estimated through a penalized partial likelihood, and the variance‐covariance matrix of the frailty is estimated through a recursive estimating formula. Moreover, we develop a likelihood ratio test to assess the dependence between the incidence and duration processes. Simulation results demonstrate that our method provides accurate parameter estimation, with a relatively fast computation time. We illustrate the methods through an analysis of hospitalizations among end‐stage renal disease patients.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13153
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:2:p:448-459
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().