Adaptive treatment and robust control
Q. Clairon,
R Henderson,
N. J. Young,
E. D. Wilson and
C. J. Taylor
Biometrics, 2021, vol. 77, issue 1, 223-236
Abstract:
A control theory perspective on determination of optimal dynamic treatment regimes is considered. The aim is to adapt statistical methodology that has been developed for medical or other biostatistical applications to incorporate powerful control techniques that have been designed for engineering or other technological problems. Data tend to be sparse and noisy in the biostatistical area and interest has tended to be in statistical inference for treatment effects. In engineering fields, experimental data can be more easily obtained and reproduced and interest is more often in performance and stability of proposed controllers rather than modeling and inference per se. We propose that modeling and estimation should be based on standard statistical techniques but subsequent treatment policy should be obtained from robust control. To bring focus, we concentrate on A‐learning methodology as developed in the biostatistical literature and H∞‐synthesis from control theory. Simulations and two applications demonstrate robustness of the H∞ strategy compared to standard A‐learning in the presence of model misspecification or measurement error.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13268
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:1:p:223-236
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().