Case contamination in electronic health records based case‐control studies
Lu Wang,
Jill Schnall,
Aeron Small,
Rebecca A. Hubbard,
Jason H. Moore,
Scott M. Damrauer and
Jinbo Chen
Biometrics, 2021, vol. 77, issue 1, 67-77
Abstract:
Clinically relevant information from electronic health records (EHRs) permits derivation of a rich collection of phenotypes. Unlike traditionally designed studies where scientific hypotheses are specified a priori before data collection, the true phenotype status of any given individual in EHR‐based studies is not directly available. Structured and unstructured data elements need to be queried through preconstructed rules to identify case and control groups. A sufficient number of controls can usually be identified with high accuracy by making the selection criteria stringent. But more relaxed criteria are often necessary for more thorough identification of cases to ensure achievable statistical power. The resulting pool of candidate cases consists of genuine cases contaminated with noncase patients who do not satisfy the control definition. The presence of patients who are neither true cases nor controls among the identified cases is a unique challenge in EHR‐based case‐control studies. Ignoring case contamination would lead to biased estimation of odds ratio association parameters. We propose an estimating equation approach to bias correction, study its large sample property, and evaluate its performance through extensive simulation studies and an application to a pilot study of aortic stenosis in the Penn medicine EHR. Our method holds the promise of facilitating more efficient EHR studies by accommodating enlarged albeit contaminated case pools.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13264
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:1:p:67-77
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().